Vertex-transitive CIS graphs

Ademir Hujdurović (University of Primorska, Slovenia)

Joint work with Edward Dobson, Martin Milanič and Gabriel Verret.

16.06.2015.

Ademir Hujdurović Vertex-transitive CIS graphs

- CIS graphs
- Characterization of vertex-transitive CIS graphs
- Classification of vertex-transitive CIS graphs with maximal cliques of size 2 or 3
- Classification of vertex-transitive CIS graphs of valency at most 7

Let Γ denote a finite simple undirected graph. A **clique** (respectively, a **stable set**) of Γ is a set of pairwise adjacent (respectively, non-adjacent) vertices.

CIS graphs

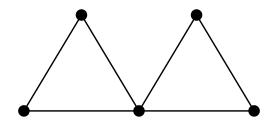
Let Γ denote a finite simple undirected graph. A clique (respectively, a stable set) of Γ is a set of pairwise adjacent (respectively, non-adjacent) vertices. The inclusion maximal cliques and stable sets of Γ are called maximal cliques and maximal stable sets respectively. The maximal cardinality of a clique (respectively a stable set) of Γ is called the clique (respectively stability) number and denoted $\omega(\Gamma)$ (respectively $\alpha(\Gamma)$).

CIS graphs

Let Γ denote a finite simple undirected graph. A clique (respectively, a stable set) of Γ is a set of pairwise adjacent (respectively, non-adjacent) vertices. The inclusion maximal cliques and stable sets of Γ are called maximal cliques and maximal stable sets respectively. The maximal cardinality of a clique (respectively a stable set) of Γ is called the clique (respectively stability) number and denoted $\omega(\Gamma)$ (respectively $\alpha(\Gamma)$).

Definition

A *CIS* graph is a graph in which every maximal stable set and every maximal clique intersect (CIS stands for "Cliques Intersect Stable sets").



イロト イヨト イヨト イヨト

æ

• A graph is CIS if and only if its complement is CIS.

- A graph is CIS if and only if its complement is CIS.
- A disconnected graph is CIS if and only if each of its connected component is CIS.

- A graph is CIS if and only if its complement is CIS.
- A disconnected graph is CIS if and only if each of its connected component is CIS.
- For every two graphs Γ_1 and Γ_2 , the lexicographic product $\Gamma_1[\Gamma_2]$ is CIS if and only if Γ_1 and Γ_2 are CIS.

The *lexicographic product* of graphs Γ_1 and Γ_2 is the graph $\Gamma_1[\Gamma_2]$ with vertex set $V(\Gamma_1) \times V(\Gamma_2)$, where two vertices (u, x) and (v, y) are adjacent if and only if either $\{u, v\} \in E(\Gamma_1)$ or u = v and $\{x, y\} \in E(\Gamma_2)$.

A graph Γ is well-covered if all its maximal stable sets are of the same size.

A graph Γ is *co-well-covered* if all its maximal cliques are of the same size. (Equivalently: if its complement is well-covered.)

Let G be a finite group with identity element 1, and let $S \subset G \setminus \{1\}$ be such that $S^{-1} = S$. We define the **Cayley graph** Cay(G, S) on the group G with respect to the connection set S, to be the graph with vertex set G, and edges of the form $\{g, gs\}$ for $g \in G$ and $s \in S$.

Let G be a finite group with identity element 1, and let $S \subset G \setminus \{1\}$ be such that $S^{-1} = S$. We define the **Cayley graph** Cay(G, S) on the group G with respect to the connection set S, to be the graph with vertex set G, and edges of the form $\{g, gs\}$ for $g \in G$ and $s \in S$.

A circulant is a Cayley graph on a cyclic group.

Let G be a finite group with identity element 1, and let $S \subset G \setminus \{1\}$ be such that $S^{-1} = S$. We define the **Cayley graph** Cay(G, S) on the group G with respect to the connection set S, to be the graph with vertex set G, and edges of the form $\{g, gs\}$ for $g \in G$ and $s \in S$.

A circulant is a Cayley graph on a cyclic group.

Every Cayley graph is vertex-transitive. The converse is not true (smallest example is the Petersen graph).

Theorem (Boros, Gurvich, Milanič, 2014)

Let Γ be a circulant graph. Then Γ is a CIS graph if and only if

- all maximal stable sets are of size $\alpha(\Gamma)$,
- 2 all maximal cliques are of size $\omega(\Gamma)$,
- $a(\Gamma)\omega(\Gamma) = |V(\Gamma)|.$

Theorem (Boros, Gurvich, Milanič, 2014)

Let Γ be a circulant graph. Then Γ is a CIS graph if and only if

- all maximal stable sets are of size $\alpha(\Gamma)$,
- 2 all maximal cliques are of size $\omega(\Gamma)$,

$$a(\Gamma)\omega(\Gamma) = |V(\Gamma)|.$$

Theorem (Dobson, H, Milanič, Verret, 2015)

Let Γ be a vertex-transitive graph. Then Γ is a CIS graph if and only if

- all maximal stable sets are of size $\alpha(\Gamma)$,
- 2 all maximal cliques are of size $\omega(\Gamma)$,
- $a(\Gamma)\omega(\Gamma) = |V(\Gamma)|.$

If $n \ge 1$ then $L(K_{n,n})$ is a connected vertex-transitive CIS graph of order n^2 and valency 2(n-1) with $\alpha(L(K_{n,n})) = \omega(L(K_{n,n})) = n$.

If $n \ge 1$ then $L(K_{n,n})$ is a connected vertex-transitive CIS graph of order n^2 and valency 2(n-1) with $\alpha(L(K_{n,n})) = \omega(L(K_{n,n})) = n$.

Proposition

Let $n \ge 2$ and let R_n be the Cayley graph on $\mathbb{Z}_{2n} \times \mathbb{Z}_4$ with connection set $S = \{(0, 1), (0, 3), (n, 0), (n, 2), (2i, 2), (2i + 1, 0) | 0 \le i \le n - 1\}.$ Then R_n is a connected CIS graph of order 8n and valency 2n + 3with $\alpha(R_n) = 2n$ and $\omega(R_n) = 4$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $n \ge 2$ and let S_n be the Cayley graph on $\mathbb{Z}_{2n} \times \mathbb{Z}_4$ with connection set $S = \{(0, 1), (0, 3), (2i+1, 0), (2i+1, 1), (2i+1, 3) \mid 0 \le i \le n-1\}.$ Then S_n is a connected CIS graph of order 8n and valency 3n + 2with $\alpha(S_n) = 2n$ and $\omega(S_n) = 4$.

Let $n \ge 2$ and let S_n be the Cayley graph on $\mathbb{Z}_{2n} \times \mathbb{Z}_4$ with connection set $S = \{(0, 1), (0, 3), (2i+1, 0), (2i+1, 1), (2i+1, 3) \mid 0 \le i \le n-1\}.$ Then S_n is a connected CIS graph of order 8n and valency 3n + 2with $\alpha(S_n) = 2n$ and $\omega(S_n) = 4$.

All of the above examples are Cayley graphs. Does there exist a vertex-transitive CIS graph which is not a Cayley graph?

Definition

For $n \geq 3$, let PX(n) be the graph with vertex-set $\mathbb{Z}_n \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and edge-set $\{(i, x, y), (i + 1, y, z) \mid i \in \mathbb{Z}_n, x, y, z \in \mathbb{Z}_2\}$. To PX(n), we add the following set of edges $\{(i, x, y), (i, u, v) \mid i \in \mathbb{Z}_n, x, y, u, v \in \mathbb{Z}_2, (x, y) \neq (u, v)\}$ to obtain the graph Q_n .

Definition

For $n \geq 3$, let PX(n) be the graph with vertex-set $\mathbb{Z}_n \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and edge-set $\{(i, x, y), (i + 1, y, z) \mid i \in \mathbb{Z}_n, x, y, z \in \mathbb{Z}_2\}$. To PX(n), we add the following set of edges $\{(i, x, y), (i, u, v) \mid i \in \mathbb{Z}_n, x, y, u, v \in \mathbb{Z}_2, (x, y) \neq (u, v)\}$ to obtain the graph Q_n .

Proposition

Let $n \ge 4$. The graph Q_n is a connected vertex-transitive CIS graph of order 4n and valency 7 with $\alpha(Q_n) = n$ and $\omega(Q_n) = 4$. Moreover, if n is prime then Q_n is not a Cayley graph.

・ 同 ト ・ 三 ト ・

Vertex-transitive CIS graphs of order at most 32

Using Gordon Royle's table of vertex-transitive graphs of order at most 32, we obtain the following with the help of a computer.

Proposition

Let \mathcal{F} be the family containing the following graphs:

- **1** $K_n, n \ge 1,$
- **2** $L(K_{n,n}), n \geq 3,$
- $R_n, n \ge 3,$

and let $\overline{\mathcal{F}}$ be the closure of \mathcal{F} under the operations of taking complements and lexicographic products. Then, up to isomorphism, every vertex-transitive CIS graph of order at most 32 is in $\overline{\mathcal{F}}$.

Ademir Hujdurović Vertex-transitive CIS graphs

æ

▶ ★ 문 ▶ ★ 문 ▶

Theorem

Let Γ be a connected CIS graph with $\omega(\Gamma) = 2$. Then Γ is complete bipartite.

Theorem

Let Γ be a connected CIS graph with $\omega(\Gamma) = 2$. Then Γ is complete bipartite.

Corollary

Let Γ be a connected vertex-transitive CIS graph with $\omega(\Gamma) = 2$. Then $\Gamma \cong K_{n,n}$, for some positive integer n.

Theorem

Let Γ be a connected CIS graph with $\omega(\Gamma) = 2$. Then Γ is complete bipartite.

Corollary

Let Γ be a connected vertex-transitive CIS graph with $\omega(\Gamma) = 2$. Then $\Gamma \cong K_{n,n}$, for some positive integer n.

Theorem

Let Γ be a connected vertex-transitive graph with $\omega(\Gamma) = 3$. Then Γ is a CIS graph if and only if $\Gamma \cong K_3[nK_1]$, or $\Gamma \cong L(K_{3,3})[nK_1]$ for some positive integer n.

Classification of VT CIS graphs with small valency

Theorem (Kostochka, 1980)

Let Γ be a graph and let Q be a collection of maximum cliques of Γ . Let Γ_Q be the graph of maximal cliques of Γ , that is, the graph with maximum cliques of Γ as vertices, and two such cliques are adjacent in Γ_Q if they intersect in Γ . If $\omega(\Gamma) > \frac{2}{3}(\Delta(\Gamma) + 1)$ and if Γ_Q is connected then $\cap Q \neq \emptyset$.

Classification of VT CIS graphs with small valency

Theorem (Kostochka, 1980)

Let Γ be a graph and let Q be a collection of maximum cliques of Γ . Let Γ_Q be the graph of maximal cliques of Γ , that is, the graph with maximum cliques of Γ as vertices, and two such cliques are adjacent in Γ_Q if they intersect in Γ . If $\omega(\Gamma) > \frac{2}{2}(\Delta(\Gamma) + 1)$ and if Γ_Q is connected then $\cap Q \neq \emptyset$.

Lemma

Let Γ be a connected, k-regular, well-covered, co-well-covered graph. Then either $\omega(\Gamma) \leq \frac{2}{3}(k+1)$ or Γ is a complete graph.

Classification of VT CIS graphs with small valency

Theorem (Kostochka, 1980)

Let Γ be a graph and let Q be a collection of maximum cliques of Γ . Let Γ_Q be the graph of maximal cliques of Γ , that is, the graph with maximum cliques of Γ as vertices, and two such cliques are adjacent in Γ_Q if they intersect in Γ . If $\omega(\Gamma) > \frac{2}{2}(\Delta(\Gamma) + 1)$ and if Γ_Q is connected then $\cap Q \neq \emptyset$.

Lemma

Let Γ be a connected, k-regular, well-covered, co-well-covered graph. Then either $\omega(\Gamma) \leq \frac{2}{3}(k+1)$ or Γ is a complete graph.

In particular, if
$$\Gamma$$
 is not complete graph then:
if $k = 3$ then $\omega(\Gamma) \le 2$
if $k = 4$ then $\omega(\Gamma) \le 3$
if $k = 5$ or 6 then $\omega(\Gamma) \le 4$
if $k = 7$ then $\omega(\Gamma) \le 5$.

Theorem

Let Γ be a connected vertex-transitive graph of valency $k \leq 7$. Then Γ is a CIS graph if and only if Γ is isomorphic to one of the following graphs:

•
$$(k = 1) K_2;$$

•
$$(k=2) K_3, K_{2,2}$$

•
$$(k = 3) K_4, K_{3,3}$$

•
$$(k = 4) K_5, K_{4,4}, L(K_{3,3}), K_3[2K_1]$$

•
$$(k = 5) K_6$$
, $K_{5,5}$, $C_4[K_2]$,

•
$$(k = 6) K_7$$
, $K_{6,6}$, $L(K_{4,4})$, $K_3[3K_1]$, $K_4[2K_1]$

•
$$(k = 7) K_8$$
, $K_{7,7}$, $K_{3,3}[K_2]$, Q_n for $n \ge 4$.

If $k \leq 4$ the result follows from the result for $\omega = 2$ and $\omega = 3$.

If $k \le 4$ the result follows from the result for $\omega = 2$ and $\omega = 3$. If k = 5 and $\omega(\Gamma) = 4$, consider first the case when Γ is irreducible. The local graph of Γ has 5 vertices, maximal cliques of size 3 with no two triangles having an edge in common. There is only one such graph.

If $k \le 4$ the result follows from the result for $\omega = 2$ and $\omega = 3$. If k = 5 and $\omega(\Gamma) = 4$, consider first the case when Γ is irreducible. The local graph of Γ has 5 vertices, maximal cliques of size 3 with no two triangles having an edge in common. There is only one such graph.

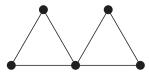


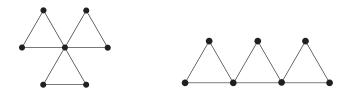
Figure: The graph T_2

It is now easy to conclude that Γ is the lexicographic product of a cycle C_n $(n \ge 4)$ with K_2 . Then n = 4 and $\Gamma = C_4[K_2]$.

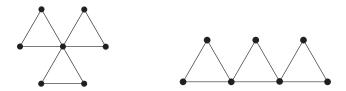
The cases when $(k, \omega) \in \{(6, 4), (7, 5)\}$ are solved similarly.

∃ → ∢

The cases when $(k, \omega) \in \{(6, 4), (7, 5)\}$ are solved similarly. If k = 7 and $\omega(\Gamma) = 4$ then there are two possible local graphs:

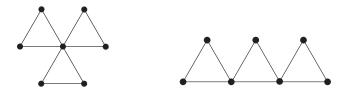


The cases when $(k, \omega) \in \{(6, 4), (7, 5)\}$ are solved similarly. If k = 7 and $\omega(\Gamma) = 4$ then there are two possible local graphs:



The first local graph is easy to handle, we have $\Gamma = K_{3,3}[K_2]$.

The cases when $(k, \omega) \in \{(6, 4), (7, 5)\}$ are solved similarly. If k = 7 and $\omega(\Gamma) = 4$ then there are two possible local graphs:



The first local graph is easy to handle, we have $\Gamma = K_{3,3}[K_2]$. The case of the second local graph is much more difficult, and it results in the infinite family Q_n .

Question

Does every CIS graph Γ satisfy $\alpha(\Gamma)\omega(\Gamma) \ge |V(\Gamma)|$?

Ademir Hujdurović Vertex-transitive CIS graphs

< A

▶ ★ 문 ▶ ★ 문 ▶

æ

Question

Does every CIS graph Γ satisfy $\alpha(\Gamma)\omega(\Gamma) \ge |V(\Gamma)|$?

Question

Does the chromatic number of every vertex transitive CIS graph equal its clique number?

• = • • = •

Question

Does every CIS graph Γ satisfy $\alpha(\Gamma)\omega(\Gamma) \ge |V(\Gamma)|$?

Question

Does the chromatic number of every vertex transitive CIS graph equal its clique number?

Question

Is every connected regular irreducible well-covered co-well-covered CIS graph vertex-transitive?

Thank you!!!

Ademir Hujdurović Vertex-transitive CIS graphs

< 3 > < 3